UNIVERSITY OF THE **PACIFIC** Arthur A. Dugoni School of Dentistry

Three-Dimensional Condylar changes in the Surgery First Approach: a comparison of Fixed Orthodontics vs. Invisalign Therapy

Ava Vakili¹, Brendon Lowder¹, Heesoo Oh¹, Hyeon-Shik Hwang¹, Jonas Bianchi¹ Department of Orthodontics, University of the Pacific, Arthur A. Dugoni School of Dentistry. San Francisco, CA – USA.

BACKGROUND

During the 1960s, traditional Orthognathic Surgery was almost exclusively done with out prior orthodontic treatment. This was known as the "Surgery First Approach". This approach led to realizations that mandibular set back was limited by overjet between the maxillary and mandibular incisors. Later in the 1970s the "Orthodontic Approach" became the standard for orthognathic surgeries which encompassed orthodontic treatment before surgery. This helped to improve alignment of dental occlusion, incisor decompensation, tooth rotation, and arch coordination. More recently a "Face First" approach has been adopted where the chief complaint is taken care of immediately by improving the facial soft tissue. This approach is a modernized "Surgery First Approach". It allows for the elimination of the presurgical orthodontic phase. It allows for all dental including incisor decompensation, movements, alignment, and surgical relapse, to be corrected in the post-surgical phase with orthodontics.

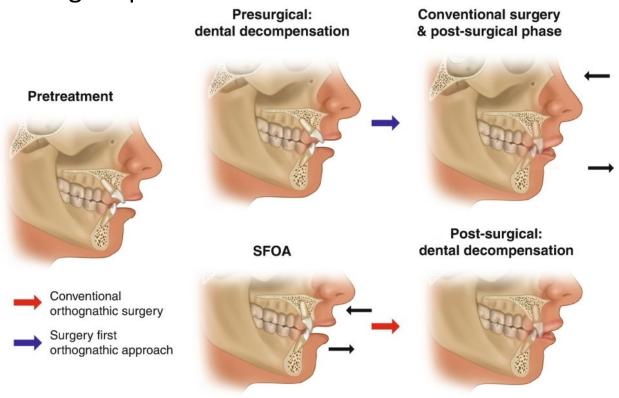
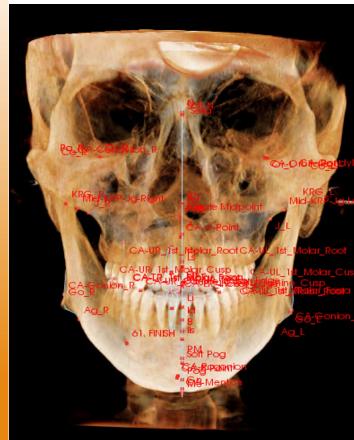



Figure A. Showing difference between Surgery first approach and traditional approach.

OBJECTIVES

To analyze condylar resorption, remodeling, and positional changes in Surgery First Approach (SFA) patients and assess correlations with cephalometric changes. The null hypothesis is that there are no significant differences in condylar changes between fixed orthodontics and Invisalign therapy post-SFA.

This retrospective observationa longitudinal study (IRB2021-70) involves two groups. Group Fixed includes 28 patients (20 males, 8 females, ages 17-25; males average age 22Y 4M, females 26Y 6M). Group Invisalign consists of 18 patients (11 males, 7 females, ages 18-48; males average age 10Y 10M, females 22Y 3M). All underwent mandibular setback

Figure 1- 3D auto-tracing

and maxillary advancement, evaluated at three points: T1 (pre-surgery), T2 (post-surgery), T3 (after orthodontic treatment). Imaging used InVivo and 3D Slicer with AI auto-tracing and specialized configuration, checking data against three planes: Frontal, Frankfort Horizontal, and Midsagittal. Inclusion criteria: adult Class III dental patients post-orthognathic surgery. Exclusion criteria: patients with condylar disorders or resorption.

Fixed	T,	1	T2		T2-T1			95% CI			Inv
n=28	Mean	SD	Mean	SD	Mean	SD	SE	Lower	Upper	p-value	n=18
Ceph values											Ceph valu
SNA	80.93	3.93	82.26	4.11	1.33	3.30	0.62	0.05	2.61	0.021	SNA
SNB	82.70	5.16	79.72	4.80	-2.98	3.52	0.66	-4.35	-1.62	<.001	SNB
ANB	3.18	2.00	2.87	1.79	-0.31	3.40	0.64	-1.63	1.01	0.316	ANB
U1 to NA_T1 (°)	29.37	7.32	6.76	2.13	22.61	5.95	1.13	20.30	24.92	<.001	U1 to NA_ T1 (
U1 to SN (°)	110.29	9.22	107.45	8.12	-2.84	5.27	1.00	-4.88	-0.80	0.004	U1 to SN (°)
U1 to L1 (°)	129.67	10.02	132.02	10.52	2.35	3.83	0.72	0.87	3.84	0.002	U1 to L1 (°)
L1 to NB (°)	22.74	6.27	20.25	7.05	-2.49	3.09	0.58	-3.69	-1.29	<.001	L1 to NB (°)
MP-SN	36.01	6.97	36.52	6.22	0.50	3.35	0.63	-0.80	1.80	0.216	MP-SN
MP to L Occ Plane	23.45	5.36	22.06	4.06	-1.39	4.26	0.80	-3.04	0.26	0.048	MP to L Occ P
FMA(MP-FH)	31.14	5.44	32.35	4.84	1.21	2.87	0.54	0.09	2.32	0.017	FMA(MP-FH)
B pt to MSP	4.33	3.12	1.94	1.41	-2.39	2.69	0.51	-3.43	-1.34	<.001	B pt to MSP
B pt to FP	4.39	4.42	6.35	4.44	1.96	5.59	1.06	-0.20	4.13	0.037	B pt to FP
B pt to FH	80.66	5.85	80.56	5.34	-0.10	2.68	0.51	-1.14	0.94	0.423	B pt to FH
A pt to MSP	1.13	0.70	1.21	0.87	0.08	1.01	0.19	-0.32	0.47	0.347	A pt to MSP
A pt to FP	2.67	1.67	2.68	1.67	0.01	1.71	0.32	-0.65	0.67	0.492	A pt to FP
A pt to FH	34.03	3.14	33.63	3.32	-0.40	2.13	0.40	-1.22	0.43	0.167	A pt to FH
Menton to MSP	1.99	7.15	-0.87	3.15	-2.86	8.74	1.65	-6.25	0.53	0.048	Menton to MS
Mx Height Diff	-0.43	2.57	0.24	1.86	0.67	2.68	0.51	-0.37	1.71	0.098	Mx Height Diff

Table 2- Results T2 vs T3 (Post Surgery to Final) - Student`s t-test

Fixed	T2	2	T	3	Т3	-T2		959	6 CI		Inv	T2		TŔ	3	T3	-T2		959	6 CI	
n=28	Mean	SD	Mean	SD	Mean	SD	SE	Lower	Upper	p-value	n=18	Mean	SD	Mean	SD	Mean	SD	SE	Lower	Upper	p-value
Ceph values											Ceph values										
SNA	82.26	4.11	81.16	3.86	-1.09	2.66	0.50	-2.12	-0.06	0.019	SNA	82.10	3.68	81.35	3.77	-0.76	1.57	0.37	-1.54	0.03	0.028
SNB	79.72	4.80	80.21	4.53	0.49	2.48	0.47	-0.47	1.45	0.153	SNB	80.21	3.94	81.68	3.40	1.47	1.38	0.33	0.78	2.15	0.000
ANB	2.87	1.79	2.53	1.52	-0.35	1.87	0.35	-1.07	0.38	0.169	ANB	2.15	1.78	1.65	1.50	-0.51	1.73	0.41	-1.37	0.36	0.117
U1 to NA_T1 (°)	6.76	2.13	7.44	2.48	-17.76	5.92	1.12	-20.05	-15.46	0.000	U1 to NA_ T1 (°)	6.88	1.67	8.23	1.85	-18.37	5.89	1.39	-21.30	-15.44	0.000
U1 to SN (°)	107.45	8.12	107.91	8.47	0.46	6.04	1.14	-1.88	2.81	0.344	U1 to SN (°)	108.70	8.21	106.36	8.65	-2.34	7.40	1.74	-6.02	1.34	0.098
U1 to L1 (°)	132.02	10.52	127.82	8.09	-4.20	11.11	2.10	-8.51	0.11	0.028	U1 to L1 (°)	133.88	10.46	133.92	9.45	0.04	8.18	1.93	-4.03	4.11	0.492
L1 to NB (°)	20.25	7.05	24.47	5.25	4.23	7.24	1.37	1.42	7.04	0.002	L1 to NB (°)	17.64	6.02	21.41	5.27	3.77	5.43	1.28	1.07	6.47	0.005
MP-SN	36.52	6.22	37.34	6.68	0.83	3.46	0.65	-0.51	2.17	0.107	MP-SN	35.34	6.08	34.72	5.95	-0.62	2.33	0.55	-1.78	0.54	0.138
MP to L Occ Plane	22.06	4.06	24.86	4.54	2.81	3.21	0.61	1.56	4.05	0.000	MP to L Occ Plane	21.42	3.62	24.49	4.21	3.08	4.46	1.05	0.86	5.30	0.005
FMA(MP-FH)	32.35	4.84	33.17	6.07	0.82	2.46	0.46	-0.14	1.77	0.045	FMA(MP-FH)	31.25	5.18	30.54	5.43	-0.71	1.50	0.35	-1.46	0.04	0.031
B pt to MSP	1.94	1.41	2.38	2.06	0.44	2.06	0.39	-0.36	1.24	0.135	B pt to MSP	1.92	2.01	2.27	1.69	0.36	2.02	0.48	-0.65	1.36	0.233
B pt to FP	6.35	4.44	5.63	4.16	-0.72	2.54	0.48	-1.71	0.26	0.072	B pt to FP	5.87	3.47	4.62	3.09	-1.26	2.76	0.65	-2.63	0.12	0.035
B pt to FH	80.56	5.34	78.41	4.87	-2.15	4.71	0.89	-3.97	-0.32	0.011	B pt to FH	77.22	5.42	75.58	5.18	-1.65	1.61	0.38	-2.45	-0.84	0.000
A pt to MSP	1.21	0.87	1.22	1.00	0.01	0.66	0.13	-0.25	0.27	0.467	A pt_to MSP	1.23	0.95	1.63	1.08	0.40	0.86	0.20	-0.03	0.83	0.034
A pt to FP	2.68	1.67	2.93	1.79	0.26	1.00	0.19	-0.13	0.65	0.093	A pt to FP	2.27	1.92	2.59	2.28	0.32	1.64	0.39	-0.50	1.14	0.210
A pt to FH	33.63	3.32	32.99	3.31	-0.65	1.66	0.31	-1.29	0.00	0.024	A pt to FH	33.81	3.66	32.83	3.28	-0.98	2.16	0.51	-2.06	0.09	0.035
Menton to MSP	-0.87	3.15	-0.27	3.71	0.60	4.20	0.79	-1.03	2.22	0.230	Menton to MSP	-0.90	2.23	-1.30	2.27	-0.40	3.01	0.71	-1.90	1.10	0.291
Mx Height Diff	0.24	1.86	0.23	1.80	-0.01	1.76	0.33	-0.69	0.67	0.486	Mx Height Diff	0.14	1.07	0.28	1.26	0.14	1.44	0.34	-0.58	0.85	0.347

METHODS

RESULTS AND DISCUSSION

Table 3- Showing results of T1 Vs T2 Differences between Fixed and Invisalign. Significant differences were seen in the SNB between the two.

	FIXED	n = 28	INV	= 18	TŹ	H1	Fix -	Inv	
Inv	T2-T1		T2-	-T1			959	6 CI	
n=18	Mean	SD	Mean	SD	Mean	SD	Lower	Upper	p-valu
Ceph values									
SNA	1.33	3.30	-0.02	2.93	1.35	0.96	-0.58	3.28	0.08
SNB	-2.98	3.52	-5.12	1.62	2.14	0.89	0.35	3.92	0.01
ANB	-0.31	3.40	-1.25	3.22	0.94	1.01	-1.09	2.97	0.17
U1 to NA(°)	-2.84	5.27	-4.20	4.31	0.03	1.40	-2.80	2.85	0.49
U1 to SN (°)	-2.49	3.09	-4.22	2.37	1.38	1.32	-1.29	4.05	0.15
U1 to L1 (°)	-1.39	4.26	1.48	3.94	0.88	1.17	-1.48	3.23	0.22
L1 to NB (°)	2.35	3.83	-2.38	2.71	-0.11	0.89	-1.91	1.68	0.44
MP-SN	0.50	3.35	1.62	3.07	-1.11	0.98	-3.09	0.86	0.13
MP to L Occ Plane	10.22	51.65	-2.29	4.92	0.90	1.37	-1.86	3.65	0.25
FMA(MP-FH)	1.21	2.87	1.63	3.33	-0.42	0.92	-2.29	1.44	0.32
B pt_to MSP	0.08	1.01	-0.98	2.92	-1.41	0.84	-3.11	0.28	0.05
B pt to FP	0.01	1.71	0.35	6.93	1.61	1.86	-2.13	5.36	0.19
B pt to FH	-0.40	2.13	-1.87	5.51	1.77	1.21	-0.67	4.22	0.07
A pt to MSP	-0.07	1.65	0.13	0.82	-0.05	0.28	-0.63	0.52	0.42
A pt to FP	-0.76	6.73	0.00	1.68	0.01	0.51	-1.02	1.04	0.49
A pt to FH	0.14	2.87	0.34	2.05	-0.73	0.63	-2.01	0.54	0.12
Menton to MSP	-0.97	3.38	0.68	4.25	-3.54	2.22	-8.01	0.93	0.05
Mx Height Diff	0.67	2.68	-0.04	1.90	0.71	0.73	-0.76	2.18	0.16

Table 4- Showing results of T2 vs T3 differences between Fixed and Invisalign. FMA increased in fixed group and decreased in the Invisalian group

	FIXED	n = 28	INV	= 18		T3-	T2 Fi	x - Inv	
	T3·	T3	-T2			959			
	Mean	SD	Mean	SD	Mean	SE	Lower	Upper	p-value
Ceph values									
SNA	-1.09	2.66	-0.76	1.57	-0.34	0.69	-1.74	1.06	0.314
SNB	0.49	2.48	1.47	1.38	-0.98	0.64	-2.27	0.31	0.067
ANB	-0.35	1.87	-0.51	1.73	0.16	0.55	-0.95	1.27	0.387
U1 to NA(°)	1.56	6.34	-1.59	7.42	3.15	2.05	-0.98	7.27	0.066
U1 to SN (°)	0.46	6.04	-2.34	7.40	2.81	1.99	-1.21	6.83	0.083
U1 to L1 (°)	-4.20	11.11	0.04	8.18	-4.24	3.05	-10.38	1.89	0.085
L1 to NB (°)	4.23	7.24	3.77	5.43	0.46	1.99	-3.56	4.48	0.410
MP-SN	0.83	3.46	-0.62	2.33	1.45	0.93	-0.42	3.32	0.063
MP to L Occ Plane	2.81	3.21	3.08	4.46	-0.27	1.13	-2.55	2.01	0.406
FMA(MP-FH)	0.82	2.46	-0.71	1.50	1.53	0.65	0.22	2.83	0.011
B pt to MSP	0.44	2.06	0.36	2.02	0.08	0.62	-1.16	1.33	0.447
B pt to FP	-0.72	2.54	-1.26	2.76	0.53	0.79	-1.07	2.13	0.253
B pt to FH	-2.15	4.71	-1.65	1.61	-0.50	1.15	-2.83	1.82	0.333
A pt to MSP	0.01	0.66	0.40	0.86	-0.39	0.23	-0.84	0.07	0.047
A pt to FP	0.26	1.00	0.32	1.64	-0.06	0.39	-0.85	0.72	0.437
A pt to FH	-0.65	1.66	-0.98	2.16	0.34	0.56	-0.80	1.47	0.277
Menton to MSP	0.60	4.20	-0.40	3.01	0.99	1.14	-1.31	3.30	0.195
Mx Height Diff	-0.01	1.76	0.14	1.44	-0.15	0.50	-1.15	0.85	0.384

Figure 2- Summary of results for the skeletal bone bases between groups and time points.

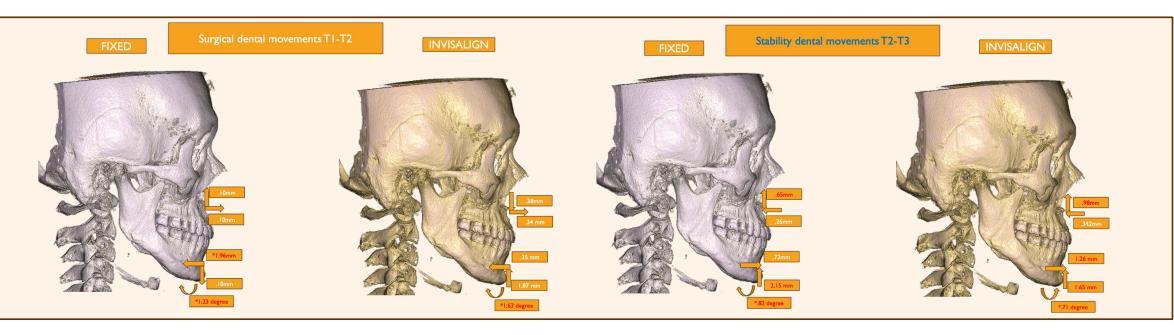
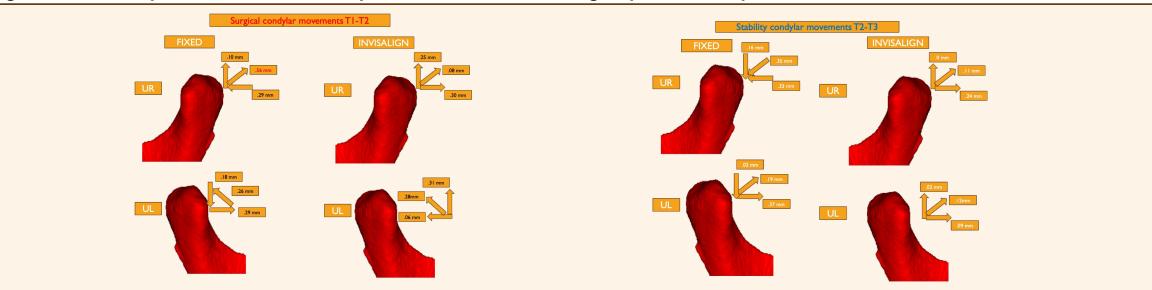
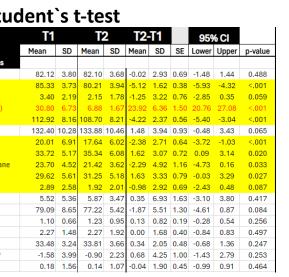




Figure 3- Summary of results for the dental movements between groups and time points.

Figure 4- Summary of results for the condyle movements between groups and time points.

Instrumentation Laboratory

Table 5- Shows there was no significant diferences between the 2groups for condylar changes between T2 and T3

	FIXED	n = 28	INV	=18	T3-T2 Fix - Inv						
	T3-	T2	T3	-T2			959				
	Mean	SD	Mean	SD	Mean	SE	Lower	Upper	p-value		
Condylar Width	-0.56	2.66	-0.23	2.29	-0.33	0.76	-1.87	1.20	0.332		
Cd_R to MSP	-0.35	1.51	-0.11	1.22	-0.24	0.42	-1.10	0.61	0.285		
Cd_R to FP	-0.33	3.61	-0.24	1.52	-0.09	0.90	-1.91	1.72	0.459		
Cd_ R to FH	0.16	0.90	0.00	0.57	0.17	0.24	-0.31	0.65	0.241		
Cd_L to MSP	-0.19	2.10	-0.12	1.72	-0.07	0.59	-1.27	1.12	0.452		
Cd_L to FP	-0.37	2.59	-0.09	1.45	-0.28	0.67	-1.63	1.07	0.338		
Cd_L to FH	0.02	1.31	-0.02	0.47	0.03	0.32	-0.62	0.69	0.457		

CONCLUSION

Most skeletal variables showed no statistically significant differences between the groups post-surgery and after treatment completion. No condylar changes were observed in the SFA between the fixed and Invisalign groups. The null hypothesis is accepted, indicating no significant differences in condylar changes between the two treatment modalities.

REFERENCES

Trauner R, Obwegeser H. The surgical correction of mandibular prognathism and retrognathia with consideration of genioplasty. I. Surgical procedures to correct mandibular prognathism and reshaping of the chin. Oral Surg Oral Med Oral Pathol 1957;10:677-89. Bell WH, Creekmore TD. Surgical-orthodontic correction of mandibular prognathism. Am J Orthod 1973;63:256-70. GraberTM, Vanarsdall RL, Vig KW. Orthodontics: Current principles and techniques, 4th ed. St. Louis: Elsevier Mosby; 2005. 16, p. 1213. Assael LA. The biggest movement: Orthognathic surgery undergoes another paradigm shift. J Oral Maxillofac Surg 2008;66:419-20. andedkar NH, Chng CK, Tan W. Surgery-first orthognathic approach case series: Salient features and guidelines. J Orthod Sci. 2016 Jan-Mar;5(1):35-42. doi: 10.4103/2278 103.176657. PMID: 26998476; PMCID: PMC4778176. Choi, JW., Lee, J.Y. (2021). Clinical Application of the Surgery-First Approach in Patients with Class II Dentofacial Deformities. In: The Surgery-First Orthognathic Approach Springer, Singapore. 🔟 Assael LA. The biggest movement: Orthognathic surgery undergoes another paradiam shift, J Oral Maxillofac Sura 2008:66:419-20 Choi, DS., Garagiola, U. & Kim, SG. Current status of the surgery-first approach (part I): concepts and orthodontic protocols. Maxillofac Plast Reconstr Surg 41, 10 (2019) Gandedkar NH, Chng CK, Tan W. Surgery-first orthognathic approach case series: Salient features and guidelines. J Orthod Sci. 2016 Jan-Mar;5(1):35-42. doi: 10.4103/227 0203.176657. PMID: 26998476; PMCID: PMC4778176 Hoana TA, Lee KC, Chuana SK, The Surgery-first Approach to Orthognathic Surgery, J Craniofac Surg, 2021 Mar-Apr 01:32(2):e153-e156, doi: No 1977 (SC).0000000006942. PMID: 337057. Abbate V, Audino G, Dell'Aversana Orabona G, Friscia M, Bonavolontà P, Lo Faro C, Committeri U, Cuéllar CN, laconetta G, Califano L. Condylar Reshap Orthognathic Surgery: Morphovolumetric and Densitometric Analysis Based on 3D Imaging and Digital Workflow. J Maxillofac Oral Surg. 2022 Jun;21(2):501-509. doi: 10.1007/s12663-022-01689-3, Epub 2022 Feb 9, PMID: 35712406; PMCID: PMC9192879. He X, He J, Yuan H, Chen W, Jiang H, Cheng J. Surgery-First and Orthodontic-First Approaches Produce Similar Patterns of Condylar D Partients With Skeletal Class III Malocclusion. J Oral Maxillofac Surg. 2019 Jul;77(7):1446-1456. doi: 10.1016/j.joms.2019.01.061. Epub 2019 Feb 13. PMID: 30853422. Wang T, Han JJ, Oh HK, Park HJ, Jung S, Kook MS. Comparison of Orthodontics-First and Surgery-First Approach in Positional Changes of the Condyle After Mandibular Setback Surgery Using Three-Dimensional Analysis. J Oral Maxillofac Surg. 2016 Dec;74(12):2487-2496. doi: 10.1016/j.joms.2016.07.015. Epub 2016 Jul 26. PMID: 27549608. Politis C, Van De Vyvere G, Agbaje JO. Condylar Resorption After Orthognathic Surgery. J Craniofac Surg. 2019 Jan; 30(1):169-174. doi: 10.1097/SCS.00000000000483 PMID: 30358743. Kawamata A, Fujishita M, Nagahara K, Kanematu N, Niwa K, Langlais RP. Three-dimensional computed tomography evaluation of postsurgical condylar disple after mandibular osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998 Apr;85(4):371-6. doi: 10.1016/s1079-2104(98)90059-2. PMID: 9574943. Abbate V, Audino G, Dell'Aversana Orabona G, Friscia M, Bonavolontà P, Lo Faro C, Committeri U, Cuéllar CN, Iaconetta G, Califano L. Condylar Reshape in Orthognathic Surgery: Morphovolumetric and Densitometric Analysis Based on 3D Imaging and Digital Workflow. J Maxillofac Oral Surg. 2022 Jun;21(2):501-509. dc 10.1007/s12663-022-01689-3. Epub 2022 Feb 9. PMID: 35712406; PMCID: PMC9192879. He X, He J, Yuan H, Chen W, Jiang H, Cheng J. Surgery-First and Orthodontic-First Approaches Produce Similar Patterns of Condylar Displacement and Remodeling in Patients With Skeletal Class III Malocclusion. J Oral Maxillofac Surg. 2019 Jul;77(7):1446-1456. doi: 10.1016/j.joms.2019.01.061. Epub 2019 Feb 13. PMID: 30853422. Wang T, Han JJ, Oh HK, Park HJ, Jung S, Kook MS. Comparison of Orthodontics-First and Surgery-First Approach in Positional Changes of the Condyle After Mandibular Setback Surgery Using Three-Dimensional Analysis. J Oral Maxillofac Surg. 2016 Dec;74(12):2487-2496. doi: 10.1016/j.joms.2016.07.015. Epub 2016 Jul 26. PMID: 27549608 Politis C, Van De Vyvere G, Agbaje JO. Condylar Resorption After Orthognathic Surgery. J Craniofac Surg. 2019 Jan;30(1):169-174. doi: 10.1097/SCS.00000000000483: PMID: 30358743 cawamata A, Fujishita M, Nagahara K, Kanematu N, Niwa K, Langlais RP. Three-dimensional computed tomography evaluation of postsurgical condylar displacemen after mandibular osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998 Apr;85(4):371-6. doi: 10.1016/s1079-2104(98)90059-2. PMID: 9574943. Akbulut N, Altan A, Akbulut S, Atakan C. Evaluation of the 3 mm Thickness Splint Therapy on Temporomandibular Joint Disorders (TMDs). Pain Res Manag. 2018 Dec 5;2018:3756587. doi: 10.1155/2018/3756587. PMID: 30651901; PMCID: PMC6311873. Ahmed, M.M.S., Shi, D., Al-Somairi, M.A.A. et al. Three dimensional evaluation of the skeletal and temporomandibular joint changes follow patients with temporomandibular joint disorders and mandibular deviation: a retrospective study. BMC Oral Health 23, 18 (2023). https://c Mantovani E, Parrini S, Coda E, Cugliari G, Scotti N, Pasqualini D, Deregibus A, Castroflorio T. Micro computed tomography evaluation of Invisalign aligner thicknes: homogeneity. Angle Orthod. 2021 May 1;91(3):343-348. doi: 10.2319/040820-265.1. PMID: 33476365; PMCID: PMC8084474.

ACKNOWLEDGMENTS

American Association of Orthodontists Foundation.