

- **Future Directions**: An integrated multiomic approach will be employed to analyze the results from CyTOF and IMC.
- underscoring the effectiveness of standard nonsurgical periodontal treatment.

Demographics Table			Lymphocytes		Myeloid cells		Structural		Signaling		Functional
		Mean±SD, <i>t</i> test.	IMC	CyTOF	IMC	CyTOF	IMC	CyTOF	IMC	CyTOF	IMC
	Control	ChP	CD45	CD45	CD66b	CD66b	vimentin	cRARP	pERK	pERK1/2	Granzyme B
	(n=12)	(n=16)	CD20	CD19	CD14	CD14	aSMA	CD235ab	pS6	pS6	VEGF
Demographics					CD200	CD123	NE	CD61	nn38	nn38	K:67
Age (years)	32.2 ± 5.0	31.7 ± 5.5	CD4JKA	CD4JKA	CD209	CD125		CD01	pp38	pp38	KIU7
Race/ethnicity			CD4	CD4	CD16	CD16	PanCK		pSTAT1	pSTAT1	MMp-9
Asian	7	4	CD8a	CD8a	CD11b	CD11b	CD31		pMK2	pMK2	
African American	1	1	CD3	CD3	CD11c	CD11c	Collagen1		nNFkB	nNFkB	
White	0	1			CDIIC	CDITC	Conagenti				
Hispanic	4	10	CD56	CD56	CD15	CD33			pCREB	pCREB	
Sex			FoxP3	FoxP3	CD163	CCR2	Nuclear		pSTAT3	pSTAT3	
Female	7	10		CD62L	HLA-DR	HLA-DR	IMC	CyTOF	pSTAT5	pSTAT5	
Male	5	6		CD161		EacDIg	Iridium-191	Iridium-191	P~	portate	
Health Metrics				CD101		rcenia	Iridium 102	Iridium 102		pSIAIO	
BMI (kg/m ²)	26.8 ± 6.0	29.3±6.4		Tbet		CRTH2	111u1u111-195	111u1u111-195		ΙκΒ	
DBP (mmHg)	117.4 ± 11.0	121.3±12.3		ΤϹℝγδ		CXCR4	Histone H3				
SBP (mmHg)	82.0 ± 8.9	78.6 ± 11.1		CD25		OI EMA					
HR (bpm)	$73.0{\pm}10.1$	74.2 ± 11.3		CD25		ULF IVI4					
Smoking History	N/A	N/A		CD7							

 Table 1. Patient Demographics

 Table 2. IMC and CyTOF Antibody Panel

PanCK-epithelium CD 31-blood vessels CD 3-T cells CD68-macrop HLADR- dendric cells CD8a-CD8 T cells

Figure 3. Represent IMC image of gingival tissue from patients with ChP collected at baseline.

Cross-Tissue Analysis Demonstrates Oral and Systemic Link in Chronic Periodontitis

¹Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA ²Biology, College of Pacific, University of the Pacific, Stockton, CA, USA

³Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA ⁴Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA

⁵Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA *Correspondence: Xiaoyuan Han, xhan@pacific.edu

ABSTRACT

• Introduction: Despite advances in dental care and oral hygiene, the prevalence of chronic periodontitis (ChP) remains high at 47.2% in the U.S. ChP not only leads to severe gum bleeding and tooth loss but also contributes to systemic diseases, including diabetes mellitus, adverse pregnancy outcomes, and cardiovascular diseases. The mechanisms of the connection between ChP and systemic health are still not fully understood. In our phase I study, we demonstrated systemic and cell-specific immune dysfunctions in patients with ChP, which can be temporarily reversed by the local treatment of ChP. For phase II study, we aim to 1) validate our findings with larger cohorts across wider time range and 2) investigate ChP oral and systemic immunological interaction by a multiplex cross-tissue analysis. • Methods: Whole-blood samples from 16 patients with ChP and 12 controls were collected at baseline (n=28), 3 weeks post-ChP treatment (n= 25), and 3 months post-ChP treatment (n= 25) in the Bell Dental Center (San Leandro, CA). The blood samples were left unstimulated or stimulated or stimulat a cocktail of interleukins 2/4/6 (IL-2/4/6), then will be analyzed using mass cytometry (CyTOF). The gingival tissue from ChP patients at baseline will be examined with imaging mass cytometry (IMC).

Conclusion: The results obtained from this study will empower us to explore the synergies of systemic and oral immune mechanisms that contribute to a defined ChP-driven immune milieu while

METHODS

B. csEN model features at baseline Figure 2. Systemic immune signature of chronic periodontitis (ChP) pre- and post-ChP treatment (phase I study). (A) Box plot illustrating the cell signaling-based elastic net (csEN) model values in subjects with ChP and controls, pre- and post-ChP treatment. Before ChP treatment, the csEN values increase in subjects with ChP in comparison to controls (9 patients, 7 controls, Wilcoxon rank sum test P = 7.9E-3). There is no change in the csEN values between subjects with ChP and controls post-ChP treatment. (B, C) csEN values overlaid on the immune signaling network

Alice Lin¹, Nicole Thompson¹, Makaylan Tseng², Jacob Einhaus³, Amy S. Tsai⁴, Thomas A. Bonham³, Edward A. Ganio³, Kazou Ando³, William Choi⁵, Karl C. Bruckman⁵, David Ojcius², Dyani Gaudilliere⁵, Brice Gaudilliere³, and Xiaoyuan Han^{*1}

OKU Sutro Excellence Day Project Cover Sheet

Project Title

Full name(s) and class year(s) of all project collaborators *Example: Jane Smith, DDS 2022; John Smith, DDS 2022*

Project Category

Enter your abstract text here (max 300 words)