

Sex Differences in the Immune Response to Chronic Periodontitis

John Huang¹, Amy Tsai³, Ina Stelzer⁴, Dorien Feyaerts⁴, William Choi⁵, David Vang², Edward Ganio⁴, Dyani Gaudilliere⁵, Brice Gaudilliere⁴, Xiaoyuan Han²

¹Arthur A. Dugoni School of Dentistry and ²Biomedical Sciences, University of the Pacific, San Francisco, CA, United States, 94103,
³School of Medicine, University of California, Davis, Davis, CA, United States, 95616,
⁴Anesthesia, ⁵Surgery, and ⁶Pediatrics, Stanford University, Stanford, CA, United States, 94305

n=6

ABSTRACT

METHODS

A. Patient recruitment and sample collection

RESULTS

Introduction: Chronic Periodontitis (ChP) is an inflammatory condition that results from oral dysbiosis and host immune dysfunction. Epidemiologic evidence has shown that men are more susceptible to ChP than women. Despite gender differences in behavior and socioeconomic status influencing oral health, the biological sex-associated immunological mechanisms underlying the pathogenesis of ChP are unclear. The objective of this study is to identify sex differences in the immune responses to chronic periodontitis.

Methods: We used a high-parameter mass cytometry immunoassay to perform an in-depth single-cell proteomic analysis of the peripheral blood immune responses in 14 ChP patients (6 males and 8 females) and 14 healthy control subjects (6 males and 8 females). Preliminary analysis was performed on 1) male vs. female in the control group, 2) male vs. female in the ChP group, 3) control vs. ChP in males, 4) control vs. ChP in females. Over 520 immune features representing the relative distribution of innate and adaptive immune cell subsets as well as their endogenous or stimulated intracellular functional responses to *Porphyromonas gingivalis*-derived lipopolysaccharide (LPS), TNF- α , IFN- α , and a cocktail of IL-2, -4, and -6, and GM-CSF were studied.

Results: We found 16 features in control subjects and 7 in ChP patients that were significantly different between males and females. Specifically, endogenous phosphorylated P38, a component of the MyD88 pathway, in neutrophils was higher in females compared to males in healthy control subjects, which was consistent with previously described sexual dimorphism in the innate immune responses. The analysis also revealed exaggerated proinflammatory response to LPS in circulating neutrophils and monocytes from male patients with ChP, but not female patients with ChP.

Conclusion: Our preliminary findings demonstrate the possibility of a sex-specific immune dysfunction associated with ChP that can be detected in the systemic circulation. Future studies in a larger cohort are needed to validate our results.

CyTOF Channel	Antigen	CyTOF Channel	Antigen	CyTOF Channel
In113	TCRγδ	Sm152	pCREB	Sm149
In113	CD33	Gd158	pSTAT5	Nd150
In115	Tbet	Gd160	pP38	Eu151
La139	FoxP3	Dy162	pSTAT1	Eu153
Pr141	CD16	Ho165	pSTAT3	Sm154
Nd142	CD25	Tm169	prpS6	Gd155
Nd143	CD3	Er170	pMAPKAPK	Tb159
Nd144	CD15	Yb172	IκB	Dy164
Nd145	HLA-DR	Yb174	pNFkB	Er166
Nd146	CD14	Yb175	pERK1/2	Er167
Sm147	CD56	Yb176		
Nd148				
	CyTOF Channel In113 In113 In115 La139 Pr141 Nd142 Nd143 Nd144 Nd145 Nd144 Sm147 Nd148	CyTOF Channel Antigen In113 In113 TCRyő In113 CD33 In115 TD5 In115 TD6 In115 FoxP3 Pr141 CD16 Nd142 CD25 Nd143 CD3 Nd144 CD15 Nd145 CHA-DR Nd146 CD14 Sm147 CD56 Nd148 K14-DR Nd146 CD14 Sm147 CD56	CyTOF Channel Antigen Antigen CyTOF Channel 1n113 TCRy6 Sm152 1n113 TCRy6 Sm152 1n113 TCRy6 Sm152 1n113 TCRy6 Sm152 1n115 Tbet Gd168 La139 FoxP3 Dy162 Pri41 CD16 Hol65 Nd142 CD25 Tm169 Nd143 CD3 Er170 Nd144 CD15 Yb174 Nd146 CD14 Yb175 Sm147 CD56 Yb176 Nd148 CD15 Yb176	CyTOF Channel Antigen TCRamel CyTOF Channel Antigen In113 TCRyô Sm152 pCREB In113 TCRyô Sm152 pCREB In113 CD33 Gd158 pSTAT5 In115 Tbet Gd160 pP38 La139 FoxP3 Dy162 pSTAT1 Pr141 CD16 Ho165 pSTAT3 Nd142 CD25 Tm169 pp56 Nd143 CD3 E170 pMARAPKAPK Nd144 CD15 Yb172 kB Nd146 CD14 Yb175 pEKK1/2 Sm147 CD56 Yb176 PEKK1/2

RESULTS

0.2

Eemale

nCREB, mDC, LPS

- We compared all 520 immune features immune between Control and ChP using the cell-signaling Elastic Net (csEN) algorithm. The box plot (Figure 3) shows that this predictive model separates patients with ChP from control (P-Value=1.67E-4), suggesting profound systemic immune dysfunction in ChP patients.
- In the heatmap (Figure 4) with unsupervised clustering algorithm, samples of male were separated from samples of female.
- We found 16 features in control subjects and 7 in ChP patients that were significantly different between males and females (Figure 5).
- The analysis also revealed exaggerated proinflammatory response to LPS in circulating neutrophils and monocytes from male patients with ChP, but not female patients with ChP.
- Endogenous pP38 in neutrophils was higher in females compared to males in healthy control subjects, which was consistent with previously described sexual dimorphism in the innate immune responses.

Figure 3. Systemic immune dysfunction in ChP. The csEN identified immune signaling features that differenties teamles from patients with ChP and those from controls at baseline. Each node is colored <u>DecredBing</u>oefficient. Rependenting indicate features deviated and decreased in samples from patients at baseline, respectively. Node size is proportional to the P value of the difference between patient and control samples (Wilcoxon rank sum test). (Right panel) For each of the 28 patients, a unique model value from the csEN is represented as a zoscen in the box plot showing that the model significantly differentiates the patients with ChP (n = 14) from the controls (n = 14). Values are presented as median, interquaritie range, and ringe. (Gaudiller, D.K. J. of Dental Research 2019).

Figure 5. Sex-specific immune dysfunction associated with ChP. We found 16 features in control subjects and 7 in ChP patients that were significantly different between males and females.

The signal level of pNFkB in classic monocytes and neutrophils were only higher in male patients with periodonitis, revealing an exagerated proinflammatory response to LPS in circulating neutrophils and monocytes from male patients with ChP, but not female patients with ChP.

The signal level of pCREB in myeloid dendritic cell and pP38 in neutrophil were only changed in females, suggesting the sexual dimorphism in the innate immune responses.

Endogenous pP38 in neutrophils was higher in females compared to males in healthy control subjects, which was consistent with previously described sexual dimorphism in the innate immune responses.

CONCLUSION

- □ Our preliminary findings demonstrate the possibility of a sexspecific immune dysfunction associated with ChP that can be detected in the systemic circulation.
- □ Future studies in a larger cohort are needed to validate our results.

INTRODUCTION

- Of the 115 million people affected, epidemiological and clinical studies show a biased prevalence of chronic periodontitis(ChP) in males, accounting for 57% and females 39%. This difference may suggest a sexual dimorphism in ChP pathogenesis and elucidate a novel component in disease etiology.
- Sex differences in immune responses have been observed throughout the whole life span (Figure 1). These sex differences in immune responses result in differential susceptibility of males and females to infectious diseases, as well as the outcome of treatment.
- The pathogenesis of periodontitis is the interaction between dysbiosis and host immune responses (Figure 2). Dysbiotic microbial communities of keystone pathogens and pathobionts are thought to exhibit synergistic virulence whereby not only can they endure the host response but can also thrive by exploiting tissue-destructive inflammation, which fuels a self-feeding cycle of escalating dysbiosis and inflammatory bone loss, potentially leading to tooth loss and systemic complications.
- Although there are sex differences in immune responses, how do the differences affect the pathogenesis of periodontitis is still unknown.
- Objective: to investigate whether a sexspecific immune dysfunction associated with ChP can be detected in systemic circulation.

Age	Carlos De atero	Childhood/ pre-puberty	Post-puberty/ adulthood	Oldage
immunity	· Increased informatory rangomes in males	1 Inflammation ormales TNK cells in males	* ioflammyation in featility * NK calls or makes	[†] forfarmunion in mater [†] R-ift in figuates [†] NK cetti in formales
ve immunity	* Engeneering of the second se	CD4/CD8 ratios and CD4 T cell numbers regain CD8 T cell numbers regain + tgA invels in makes a function mides a function mides a function mides a function	CD4/CD6 ratios and CD4 T cells 1 in females CD8 T cells 1 in males T cell at mattery proliferation 1 in females T in females T in females T in females B cells 1 in females	CD4/CD8 ratios and CD4-T cells Tim females CD8 T cells Tim DB8 T cells criminates T cells criminates T cells criminates T cells 7 in malm BT cells 7 in malm BT cells 7 in malm BT cells 7 in malm

9

Figure 1. Sex differences in immune responses throughout the whole life span. (Klein, S., Flanagan, K. Nat Rev Immunol. 2016)

OKU Sutro Excellence Day Project Cover Sheet

(ONE Cover Sheet per project)

Project Title: Sex Differences in the Immune Response to Chronic Periodontitis

Award Category: DDS & IDS - Research

List names of <u>all</u> contributors to this project:

1.	Student Name:	John Huang	<u>#989</u> 349358
	Program:	DDS	Class Year 2024
2.	Student Name:		#989
	Program:	Please select	Class Year
3.	Student Name:		#989
	Program:	Please select	Class Year
4.	Student Name:		#989
	Program:	Please select	Class Year
5.	Student Name:		#989
	Program:	Please select	Class Year
6.	Student Name:		#989
	Program:	Please select	Class Year
7.	Student Name:		#989
	Program:	Please select	Class Year

Last field on next page...

8. Enter your abstract text here (300 word max) :

Introduction: Chronic Periodontitis (ChP) is an inflammatory condition that results from oral dysbiosis and host immune dysfunction. Epidemiologic evidence has shown that men are more susceptible to ChP than women. Despite gender differences in behavior and socioeconomic status influencing oral health, the biological sex-associated immunological mechanisms underlying the pathogenesis of ChP are unclear. The objectiv of this study is to identify sex differences in the immune responses to chronic periodontitis.

Methods: We used a high-parameter mass cytometry immunoassay to perform an in-depth single-cell proteomic analysis of the peripheral blood immune responses in 14 ChP patients (6 males and 8 females) and 14 healthy control subjects (6 males and 8 females). Preliminary analysis was performed on 1) male vs. female in the control group, 2) male vs. female in the ChP group, 3) control vs. ChP in males, 4) control vs. ChP in females. Over 520 immune features representing the relative distribution of innate and adaptive immune cell subsets as well as their endogenous or stimulated intracellular functional responses to Porphyromonas gingivalis-derived lipopolysaccharide (LPS), TNF-±, IFN-±, and a cocktail c IL-2, -4, and -6, and GM-CSF were studied.

Results: We found 16 features in control subjects and 7 in ChP patients that were significantly different between males and females. Specifically, endogenous phosphorylated P38, a component of the MyD88 pathway, in neutrophils was higher in females compared to males in healthy control subjects, which was consistent with previously described sexual dimorphism in the innate immune responses. The analysis also revealed exaggerated proinflammatory response to LPS in circulating neutrophils and monocytes from male patients with ChP, but not female patients with ChP.

Conclusion: Our preliminary findings demonstrate the possibility of a sex-specific immune dysfunction associated with ChP that can be detected in the systemic circulation. Future studies in a larger cohort are needed to validate our results.

Thank you for filling out the OKU Sutro Excellence Day Project Cover Sheet!Please merge this Cover Sheet with your Final Project Materials (ie, research poster, clinical case, paper, or other creative production) before uploading to the Final Project Submission Form.